Skip to content

Archive for

Serious Geothermal Troubles for Reykjavík Energy

Few months ago, we wrote about the troubles of Reykjavík Energy regarding its 303 MW Hellisheiði geothermal plant. Now, an Icelandic newspaper has looked into the matter, and it seems that the future generation of the Hellisheiði plant is somewhat uncertain. Following is a rough translation of a story published yesterday in the daily paper Fréttablaðið:

hellisheidi-geothermal-plant_reykjavik-energy-2Icelandic energy firm ON, a subsidiary of Orkuveita Reykjavíkur (Reykjavik Energy) has planned a six-year drilling program, costing ISK 13 billion, just to maintain enough steam for the Hellisheiði geothermal plant. The plant was constructed in three phases in the period 2006-2011. If nothing will be done, this fairly new geothermal power plant will experience rapidly falling generation.

Reykjavik Energy has already announced a tender for the drilling of seven new geothermal wells over the next three years. It is not yet known how many new wells in total will be needed to ensure full generation of the plant. But a newly revised plan of ON allows for 15 new wells to be drilled over the coming ten years.

This is somewhat less drilling than ON had anticipated necessary when the power company first introduced its drilling program last autumn (2016). However, the situation has turned out to be more serious than originally thought in 2013, when the company first admitted the problem of falling steam. The fact is, that very soon after the Hellisheiði station was fully constructed it became clear that the plant would also be needing geothermal steam from the nearby Hverahlíð geothermal area.

The geothermal resource at Hverahlíð now supplies Hellisheiði with enough steam for 50 MW of power capacity. The original geothermal area which the Hellisheiði station is utilizing, now only supplies enough steam for 225 MW (but the plant has an installed capacity of 303 MW). In addition to the cost of drilling for more steam, Reykjavík Energy also needs to invest an estimated ISK five billion over the next five years, for re-injecting water into the deep geothermal source.

reykjavik-energy_hengill-geothermal-areasAlready in 2012, the management of Reykjavík Energy had realized that the Hellisheiði geothermal plant was experiencing falling steam, thus not being able to deliver expected sustainable generation. The following year (2013) it was decided to connect the plant with the nearby geothermal area called Hverahlíð. Until then, Reykjavík Energy had been planning a new 90 MW geothermal station at Hverahlíð, to further supply aluminum industry in Iceland.

The new pipeline from Hverahlíð started delivering steam to the Hellisheiði station in early 2016. The cost of the pipeline was more than ISK three billions. If this pipeline-project would not have been realized, Reykjavík Energy would have needed to drill several new geothermal wells, between 2012 and 2014, at an estimated cost of ISK 700 millions for each well. Such drilling project at that time would have been almost impossible, as the company was in critical financial situation.

In 2013, scientists at Reykjavík Energy predicted that due to over-exploitation of the geothermal resource, the performance of Hellisheiði station would decline by an equivalent of seven MW on average annually. By then, the management realised that the time-frame in which the 303 MW power plant had been constructed, had been unrealistically short.

Now it is generally accepted that geothermal resources in Iceland need to be utilized in smaller phases, to ensure enough geothermal steam for the turbines. And the result of each modest step needs to be analyzed before starting on the next phase.

reykjavik-energy_bjarni-bjarnason-ceo-of-the-year-award-2014Bjarni Bjarnason, CEO of Reykjavík Energy and Chairman of its subsidiary ON, now says that soon after the Hellisheiði plant came into full operation, it became clear that the geothermal area utilized by the plant was not performing as the company had hoped for.

“After mid-year 2014, it became clear that the area was not delivering as sustainable power as had been expected. The falling generation was equivalent to loosing 20 MW of capacity each year, which was much more than had been expected when the plant was designed and constructed.”

Bjarnason acknowledges that this outcome was a shock. And he adds that last autumn (2016) when the company was deciding on future plans and budget, the scenario was “very dark”. [It should be noted that Bjarnason was not working at Reykjavík Energy when decisions where taken regarding construction of the Hellisheiði plant].

The situation Reykvík Energy was faced with in the autumn of 2016, was to drill up to 26 new geothermal wells, just to maintain the production of the Heillisheiði plant. The total new investment in the coming five years was expected to be ISK 27 billion – just to keep the generation of the plant stable at a satisfactory level.

hellisheidi-geothermal-plant_on-2At that time the company launched a special program to analyze the geothermal resource. This research lead to a conclusion which is more positive than the previous estimate from last autumn. It is now expected that the drilling needed to keep the production stable will have a total cost of ISK 19 billions.

This lower cost reflects the new estimate of the resource, resulting in fewer new wells needed to deliver enough energy for the plant. The new geothermal wells are expected be drilled both in the Hellisheiði and Hverahlíð areas, and are supposed to maintain enough steam for 285 MW.

Asked if the decision to connect the Hellisheiði Plant with the geothermal area in Hverahlíð was a mistake – given the current need to undertake a major drilling for more steam – Bjarnason points out that the pipeline to Hverahlíð was both successful and necessary to save the operation of the Hellisheiði plant.

“ When we look at our decision [to connect the Hellisheiði plant with the Hverahlíð geothermal area] it was absolutely correct. And the project itself was successful; no technical problems nor accidents occurred during the construction of the pipeline, despite the snowy winter that year”.

reykjavik-energy_hverahlid-geothermal-areaBjarnason also points out that the steam from Hverahlíð has given Reykjavík Energy the opportunity to reduce exploitation of older geothermal areas. And he claims that it has already become obvious that the already explored areas have recovered faster than expected.

The total cost of Hellisheiði geothermal plant so far is about ISK 94 billion (close to USD 850 millions or just under USD 3 million pr. each MW). Having regard to this cost, it is clear that the extra cost due to the new geothermal wells (ISK 19 billions) is significant. However, Reykjavík Energy would in any case have needed to drill new wells to keep the production of the Hellisheiði plant stable. If original plans would have been realized, the company would in any case have drilled one new geothermal well every year (on average) to keep the generation stable.

The Hellisheiði plants generates 20% of all revenues of Reykjavík Energy. The profitability (return on investment; ROI) of the plant is considered not to be acceptable. According to the annual report of Reykjavík Energy for 2015, the combined ROI of the two geothermal plants at Hellisheiði and Nesjavellir was 4.8% for hot water production and 4.9% for electricity generation. This is much lower return than the normal target for profitability in competitive energy services, where 7-8% return may be seen as acceptable.

Whether the new geothermal wells will return the generation at the Hellisheiði geothermal plant into balance, and offer a satisfactory ROI, remains to be seen. The success of drilling for geothermal steam is always uncertain.

Earlham Institute in Partnership with Verne Global

The Earlham Institute (EI) as selected Verne Global’s data centre campus in Iceland to investigate the efficiencies of distributing large-scale genomics and computational biology data analysis.

verne-global-data-centre-icelandEI, through Verne Global, will have access to one of the world’s most reliable power grids, delivering close to  100% geothermal and hydroelectric renewable energy. According to a story on Yahoo Finance, Verne Global “will enable the EI to save up to 70% in energy costs […] and with no additional power for cooling, significantly benefiting the organisation in their advanced genomics and bioinformatics research of living systems.” The power cost for EI in Iceland is said to be 40 GBP/MWh, which at current exchange rate is close to 50 USD/MWh.

One of EI’s goals is to understand crop genomes so new varieties can be developed to secure food supply in the face of a growing population and environmental change. In an announcement, Dr Tim Stitt, Head of Scientific Computing at EI, says that modern bioinformatics is driven by the generation of ever increasing volumes of genomic data requiring large and collaborative computing resources to help process it quickly and at scale. “At EI, we have some of the largest computational platforms for the Life Sciences in Europe and the demand for our computing capability is only increasing, putting pressure on the capacity and operational costs of our existing data centres.”

tim_stitt_earlham-instituteIn a video posted on EI’s website (also available on Vimeo), Dr Stitt further describes why moving their High-Performance Computing  (HPC) workload to Iceland made economic sense. To tackle the big data requirements of EI’s genomics and bioinformatics research in decoding living systems, EI wanted to explore the benefits of remotely managing its HPC resources. Mr Stitt explains that the Verne Global Icelandic campus provides an economical solution by protecting against energy price inflation over the next 10-20 years, with their environmentally friendly and fully sustainable power supply. In addition, the cooling is free and optimised design infrastructure is to reduce the total costs of EI’s scientific computing infrastructure.

This is obviously a very positive development for the Icelandic data centre industry. Which can be expected to experience rapid growth in the coming years.

HVDC Hansa PowerBridge Cooperation Agreement

A new 700 MW HVDC (high voltage direct current) subsea electric cable is planned to be constructed between Sweden and Germany. The cable is refereed to as the Hansa PowerBridge. The project has been on preparation level for several years, and now it has been decided that the 300 km long interconnector will be commissioned by 2025/26.

hansa-power-bridge-map-2In last January (2017) the Swedish and German transmission system operators (TSO’s) Svenska kraftnät and 50Hertz  agreed on further details regarding the planning and construction of the Hansa PowerBridge, when a cooperation agreement was signed in Berlin. The new agreement includes time-schedule and provisions on the technical design, project organisation, ownership structures, cost allocation, tendering, construction and commissioning of the planned interconnector.

The approximately 300 km long Hansa PowerBridge will be submarine at 200 km. The German grid connection point for the cable is planned in Güstrow, Mecklenburg-Western Pomerania. On Swedens side the cable will connect to the Swedish transmission network at Hurva in Skåne. It is expected that German consumers will benefit greatly from being connected to Scandinavian hydropower capacities. Also the cable makes it possible for Sweden to import electricity generated by strong winds in the north-eastern part of Germany .

germany-new-planned-electricity-interconnectors-mapThe Hansa PowerBridge is seen as one more important step towards a common European electricity market, as it will improve the integration of renewable energy sources in the transmission system. As such it enables an even more efficient use of the renewable generation capacities across the border. This should contribute to the climate-friendly and cost-efficient generation of electricity.

The next steps in the project will be preparations for the permitting procedure (to be concluded by end of 2021), then having call for tenders for the installations (in 2022), and finally the interconnector being operational in 2025/2026. The total investment costs is estimated close to 600 million EUR, and will be evenly distributed among the two TSOs.

The Green Transformation of DONG Energy

Danish energy firm DONG Energy is in the process of selling all its oil and gas business. This is part of a major strategy where DONG is to lead the way in the transformation to a sustainable energy system and to create a leading green energy company.

Away from oil and gas

DONG’s oil and gas business on the continental shelf of Denmark, Norway and the United Kingdom has for decades been a core part of the company. According to Henrik Poulsen, CEO of DONG, the company now aims at selling all its oil and gas fields as one package, already this year (2017).

It has not been revealed who the potential buyer is. According to Danish media the most likely candidates are Maersk Oil and the US private equity fund EIG Global Energy Partners. EIG is the investor behind the company Chrysaor, which few days ago bought a variety of oil and gas fields in the North Sea from Shell.

Focusing on renewable power generation

dong-energy-green-transformation_2016DONG is also transforming its power production, by out-phasing coal. Not long ago coal used to be the overwhelming source for DONG’s (and Denmark’s) electricity- and heat generation. During the last ten years, DONG has reduced its coal consumption by 73% and is now aiming at phasing out coal completely from its power and heat generation by 2023. This will happen by replacing coal with sustainable biomass, at the same time as DONG will increase wind power generation.

dong-energy-mix_2006-2016-1This means that in just one decade, DONG Energy will have gone from being one of the most coal-intensive utilities in Europe to being among the greenest energy companies on the continent, being able to compare it self with Norwegian Statkraft and Icelandic Landsvirkjun.

Thus it may be no surprise that DONG now has launched a competition where Danes can try out their knowledge on green energy – and the winner will be awarded a week travel trip to Iceland. Iceland is of course the only European country fulfilling all its electricity consumption with renewable power generation. In addition, most of Iceland’s heating is supplied by utilisation geothermal sources, making Iceland the greenest energy country in Europe.

dong-energy-award-iceland-trip_2017

Does Facebook Not Want Truly Green Data Centers?

facebook-zuckerberg-datacentre_screen-shot-2017-01-22-at-18-14-02Two years ago, we where wondering if Apple does not want truly green data centers. Now we might ask if this also applies to Facebook. Because it seems that Facebook is in fact not to keen on truly green data centers.

According to an announcement published in last January (2017), Facebook is going to build a new data centre in the Danish city of Odense, on the island of Funen (Fyn) west of Copenhagen. At a press conference with local authorities, the California-based tech company said this data centre to be the companies third such facility outside of USA.

And Facebook’s director of data center operations, Niall McEntegart, was quoted saying that “the Odense data centre will be one of the most advanced, energy-efficient data centers in the world”. It was also stated by Facebook management that the Odense data centre will be powered exclusively by renewable energy.

This is going to be an investment of more than USD 100 millions, and will provide 150 jobs when operational (in 2020). But in fact this new data centre will hardly be powered by 100% renewable energy.

denmark-gross-electricity-consumption_1990-2015-with-forecast-to-2025_table-from-energinet-denmark_sept-2016Surely Denmark generates substantial amount of its electricity by utilising renewable sources (mostly wind). Also, Denmark has interconnectors with major hydro power countries, like Sweden and Norway. However, the fact is that very large share of the electricity people and businesses in Denmark consume, is generated by burning fossil fuels (mostly coal).

According to the most recent information from the European Union, (see table here), the renewable’s share of Denmark’s gross electricity consumption in 2014 was close to 45 percent. More recent information from the Danish transmission system operator (TSO), Energinet, tells us that the share of renewable energy in net generation of 2015 was close to 67%. And according to Energinet, even in 2025 fossil fuels will be an important part of Denmark’s power mix (as explained on the graph at left).

facebook-data-centre_odense-denmark-electricity-supply-mapHaving regard to the facts, it is hardly correct to say that a data centre located in Denmark, connected to the grid.  will be run entirely on renewable energy sources only. Obviously Facebook intends to buy so-called Green Certificates, which are a tradable commodity proving that certain amount of electricity is generated using renewable energy sources only. However, this does not mean that the electricity being consumed by the buyer of the certificate is from renewable sources – it might as well be from a coal power station in Denmark or from a nuclear plant in Sweden.

The result is that every data centre in Denmark, connected to the grid, will in fact be using electricity from all kinds of power plants, including for example coal power stations. If Facebook truly wants to run its data centre on 100% renewable energy, the company should connect the data centre to a grid that only delivers electricity from renewable sources. In Europe probably no grid comes as close to this as in Iceland.

Iceland produces close to 99.9 percent of its electricity by utilising hydro- and geothermal power (and some wind power). So instead of claiming its data centre in Denmark being powered by 100% renewable energy, Facebook should consider Iceland as the location for its next data centre in Europe.