Skip to content

Posts from the ‘Wind Power’ Category

Norwegians see high value in Icelandic wind

Sarpsborg, Norway and Reykjavík, Iceland.
Media release, May 7 2019.

The Norwegian wind power developer Zephyr has established a wind energy firm in Iceland; Zephyr Iceland. The company intends to invest considerable funds in research on Icelandic wind conditions, with the aim of constructing wind farms in the coming years, offering new type of renewable power at competitve prices.

Public Norwegian ownership

Norwegian Zephyr is owned by three Norwegian hydropower companies. They are Glitre Energi, Vardar, and Østfold Energi. These three companies are owned by Norwegian municipalities and counties. The projects of Zephyr Iceland will be managed by Ketill Sigurjónsson, who is also shareholder in the wind power firm. Ketill is the founder of Askja Energy Partners and chief editor of the Icelandic and Northern Energy Portal.

More than 500 MW of wind power in operation

In Norway, Zephyr has already constructed more than 300 MW of wind power capacity, representing an investment of more than ISK 35 billion. Having regard to current projects, the company will soon be operating close to 500 MW of wind power in Norway. This equals the electricity consumption of approximately 75.000 Norwegian households.

Major international customers

Zephyr not only possesses high level of technical knowledge of experience in all aspects of wind power development, but also has good relationships with major international investors and customers.  Among Zephyr’s partners in its projects so far are technology giant Google, global investment management corporation Black Rock, and aluminum producer Alcoa.

Olav Rommetveit, CEO of Zephyr and Chairman of the board of Zephyr Iceland:

“Iceland has amazing wind resources. Even better than Norway. So I am very pleased with our decision in Zephyr to have Iceland as our first market outside Norway. Iceland’s excellent wind resources in combination with the strong flexibility of the Icelandic hydropower system creates exceptionally good opportunities to utilize the wind energy very efficiently.”

Morten de la Forest, member of the board of Zephyr Iceland:

“Zephyr has for some time carefully been studying the Icelandic power market and the relevant legislation and policies. Our company sees strong indications that Icelandic wind will be competitive with both hydropower and geothermal power, creating significant opportunities for Iceland to develop economical green wind power projects.”

Ketill Sigurjónsson, Managing Director of Zephyr Iceland:

“Having regard to Iceland´s strong winds it is about time to start utilizing the Icelandic wind resources for electricity production. This will contribute to an even stronger competitiveness of the Icelandic electricity sector. With an experienced and qualified partner as Norwegian Zephyr, Zephyr Iceland will have great possibilities to implement our vision for a new low-cost and environmental friendly type of green energy production. At Zephyr Iceland our focus will be on careful project preparation and good cooperation with all parties involved. Iceland’s future is windy and bright.”

For further information please contact Ketill Sigurjónsson, Managing Director of Zephyr Iceland, by sending message here.

The photo above shows the 160 MW Tellenes wind farm of Zephyr in Norway.

Icelandic wind power becoming highly interesting

So far, less than a handful of modern wind turbines have been constructed in Iceland. It has simply been more economical to harness geothermal- and hydro resources for power generation. This situation may be changing, as it is becoming economically interesting to harness Icelandic wind energy. In this article we take a look at some hydropower projects that are currently being considered in Iceland, comparing them to the cost of utilising wind energy. It turns out that harnessing the Icelandic wind may indeed becoming a very interesting investment.

Astonishing cost decline of wind power

Hreyfiafl-wind-power-cost-development_2009-2017_Lazard-LCOE-version-11

LCOE for onshore wind. Analysis by Lazard.

It has been called “the fastest and most astonishing turnarounds in the history of energy“: In some areas, building and running new renewable energy has become cheaper than just running existing coal and nuclear plants.

As Iceland is or at least has been quite special, by generating all its electricity through harnessing fairly low-cost geothermal- and hydropower sources, one might wonder if the declining cost of wind and solar will have any consequences for the Icelandic power sector? The answer is not very complicated. Due to Iceland’s northerly location, solar power is not becoming a real competitive option in generating electricity in Iceland. On the other hand, Iceland offers numerous locations with very high wind capacity factor. Thus, the declining cost in the wind power industry may soon drive important changes in the Icelandic power sector, where wind farms will become a lucrative business.

Several small [expensive] hydropower plants being prepared

Several small hydroelectric projects (with a capacity below 10 MW) are currently being prepared in Iceland. These include 9.9 MW Brúará hydropower station in South Iceland, 9.8 MW Svartá hydropower station in Northern Iceland, 9.3 MW hydroelectric plant in glacial river Hverfsfljóti in Southwest Iceland, and 5.5 MW Hólsvirkjun hydropower station in Northern Iceland. The combined capacity of these four stations would be close to 35 MW. With an estimated cost well above 3 million USD pr. each megawatt, all those projects will be quite costly and probably more costly than harnessing Icelandic wind energy.

Somewhat larger project is the 55 MW Hvalá River hydropower station, to be constructed in the faraway Northwestern part of Iceland (Vestfirðir or West Fjords). This power plant will be quite costly and the transmission cost will be high, as the project is far away from the current transmission system. However, due to the high reliability of the Hvalá station with its mountain reservoirs, the project can be seen as quite sensible. On the other hand, wind farms may also offer quite strong reliability, such as if constructing three 30-40 MW of wind power in different locations in or close to the West Fjords. By locating the wind farms adjacent or close to the current transmission lines, such a project might be less costly than the somewhat expensive Hvalá hydroelectric station with its high transmission cost.

Icelandic wind power becoming competitive

According to a recent study published by the federation of energy and utility companies in Iceland (Samorka), the levelized cost of energy (LCOE) for upcoming Hvalá River hydropower station is expected to be 49.70 USD/MWh (and then the transmission cost is not included). In comparison, in its most recent “levelized cost of energy analysis” 
(LCOE), financial advisory and asset management firm Lazard now estimates the LCOE for wind farms in good locations in the USA as low as 30 USD/MWh (as explained on the slide at top of the article).

Slide by IIT Comillas and MIT.

It is also interesting that according to a new study by the universities IIT Comillas in Madrid and MIT in Boston, wind farms in Iceland could generate electricity at LCOE close to or even below 35 USD/MWh. This low cost beats all planned geothermal projects in Iceland and is lower cost than most of the hydropower projects under consideration, making the development of wind farms in Iceland highly interesting.

However, it is still interesting to invest in new geothermal- and hydropower plants in Iceland, as they in general offer very reliable power production. Iceland is an isolated power market with no interconnectors to other countries, and thus the country has to rely on domestic access to spare capacity when the wind would not be blowing well enough.

For wind farms to be competitive in Iceland, they need to be cheap enough to make it an interesting option to increasing the output from the robust system of the Icelandic hydro reservoirs (such process of adding new turbines to conventional hydropower stations has already started in Iceland). By such methodology it will be possible to add substantial capacity in the power system without constructing expensive new hydropower reservoirs or geothermal stations. Also, low-cost Icelandic wind power could be harnessed to save water in the current reservoirs, and/or work as pumped hydroelectric storage. Due to such interesting possibilities, it is likely that wind farms will soon be constructed in Iceland even without any connection with foreign power markets. Of course an interconnector like IceLink would make Icelandic wind power even more interesting to harness.

One wind farm instead of four hydroelectric plants?

Earlier we mentioned the four fairly small hydroelectric projects (each below 10 MW) currently being prepared in Iceland. When comparing how much wind power would be needed to offer equal generation as the four hydropower stations, it seems quite clear that harnessing the Icelandic wind would be less costly and have less negative environmental impacts.

The total power capacity of the said four hydropower stations (Brúará, Svartá, Hverfisfljót and Hólsvirkjun) will/would amount to approximately 35 MW. Some of them would have the advantage of offering quite stable generation all year around, while a project like the 9.3 MW Hverfisfljót hydropower station would be harnessing glacial water where the flow in winter is very low. This means that the yearly capacity-factor of the Hverfisfljót station will probably be quite low; even under 50%.

Of course a wind farm would deliver more fluctuating production than the combined four hydropower stations, thus needing more backup power. And in the long run, hydropower is probably almost always the lowest cost option (due to very long life time), at least if the environmental damage by dams and head-race canals of the hydro projects are not taken into account.

It is not simple to estimate how much Icelandic wind power would be needed to generate a similar amount of electricity as the four hydropower stations. Probably a well-located Icelandic wind farm(s) with a capacity of approximately 70-80 MW could generate as much electricity annually as the four hydropower stations of totally 35 MW. The cost of the hydroelectric stations would most likely be close to USD 120 million. The cost of 70-80 MW wind farm in Iceland could be substantially lower; probably below USD 100 million.

When also having regard to the environmental impact, the option of wind power in Iceland becomes even more attractive. Besides the wind farm(s) of 70-80 MW being less costly than the four hydropower stations of 35 MW, the wind farm offers the chance of avoiding severe environmental damages to some of Iceland’s wild and free running rivers. For example in the case of the Hverfisfljót hydropower project, the waterfalls in the river-canyon would become close to dry substantial part of the year. However, the key issue for harnessing Icelandic wind power is the declining cost in wind energy technology. Which now is making wind power a real option in the Icelandic energy sector.

NB: Icelandic wind power development firm Hreyfiafl has same ownership as Askja Energy Partners. Hreyfiafl aims to have its first wind farm in Iceland in operation within five years from now. Icelanders can follow the process through the Twitter-account of Hreyfiafl.

EU supports 1,400 MW NorthConnect HVDC cable

In mid February 2017 EU’s Innovation and Networks Executive Agency (INEA) published a list of energy infrastructure projects that have been selected to receive financial support from the European Union. One of these projects, designated as a Project of Common Interest, is the NorthConnect HVDC subsea cable, to connect the electricity markets in Norway and Scotland.

hvdc-north-connect_norway-uk-route-illustrationThis decision by INEA makes the approximately 655 km NorthConnect project eligible to apply for funding from the Connecting Europe Facility, the EU’s funding support programme for infrastructure, receiving over EUR 10 million to support its development. The NorthConnect cable will have a capacity of 1,400 MW. As other subsea interconnectors with Norway, the NorthConnect is expected to further balance the grid between the relevant countries and allowing wider electricity trading across Europe. Thus, this new cable will not call for increased hydro power capacity in Norway, which generates close to 100% of all electricity by utilizing hydro power.

Onshore Wind Farm Farr, Scotland / Onshore-Windpark Farr, SchottScotland has been developing major wind capacity. When strong winds will generate high amounts of electricity; the NorthConnect interconnector makes it possible to export part of the generation to Norway. Meanwhile, the massive hydro reservoirs in Norway will become like gigantic green batteries being charged. When the winds in Scotland will be calmer, the Norwegian hydro power companies will turn on their turbines, making it possible to export electricity to Scotland. This should increase security of supply and stabilize electricity prices for consumers. In addition, the new interconnector will increase the use of renewable energy in Europe.

The NorthConnect power cable will be routed from Simadalen in Norway, across the North Sea to Long Haven Bay, just south of Peterhead in Scotland. On the Norwegian side of the link, the cable will follow the long Hardangerfjord in western Norway, until landing at Simadalen. The exact route across the North Sea has yet to be determined. The project is due to start construction in 2019, reaching completion in 2022.

statnett-hvdc-subsea-cables-balancing-gridIf everything goes as planned, NorthConnect will be the first subsea interconnector from Norway owned by power companies. So far all the subsea power cables from Norway have been owned by the relevant transmission system operators. Current owners of the NorthConnect project are the Swedish national energy firm Vattenfall and three Norwegian power companies; Agder Energi, E-CO and Lyse Produksjon. All these four companies are in public ownership; the Swedish state owns Vattenfall and the three Norwegian firms are owned by several Norwegian municipalities and the national power company Statkraft.

HVDC Hansa PowerBridge cooperation agreement

A new 700 MW HVDC (high voltage direct current) subsea electric cable is planned to be constructed between Sweden and Germany. The cable is refereed to as the Hansa PowerBridge. The project has been on preparation level for several years, and now it has been decided that the 300 km long interconnector will be commissioned by 2025/26.

hansa-power-bridge-map-2In last January (2017) the Swedish and German transmission system operators (TSO’s) Svenska kraftnät and 50Hertz  agreed on further details regarding the planning and construction of the Hansa PowerBridge, when a cooperation agreement was signed in Berlin. The new agreement includes time-schedule and provisions on the technical design, project organisation, ownership structures, cost allocation, tendering, construction and commissioning of the planned interconnector.

The approximately 300 km long Hansa PowerBridge will be submarine at 200 km. The German grid connection point for the cable is planned in Güstrow, Mecklenburg-Western Pomerania. On Swedens side the cable will connect to the Swedish transmission network at Hurva in Skåne. It is expected that German consumers will benefit greatly from being connected to Scandinavian hydropower capacities. Also the cable makes it possible for Sweden to import electricity generated by strong winds in the north-eastern part of Germany .

germany-new-planned-electricity-interconnectors-mapThe Hansa PowerBridge is seen as one more important step towards a common European electricity market, as it will improve the integration of renewable energy sources in the transmission system. As such it enables an even more efficient use of the renewable generation capacities across the border. This should contribute to the climate-friendly and cost-efficient generation of electricity.

The next steps in the project will be preparations for the permitting procedure (to be concluded by end of 2021), then having call for tenders for the installations (in 2022), and finally the interconnector being operational in 2025/2026. The total investment costs is estimated close to 600 million EUR, and will be evenly distributed among the two TSOs.

Lower cost of wind power

wind-lcoe_2010-2016_lazard_askja-energy-partners-2017The competitiveness of new wind power has been increasing rapidly. According to Lazard, the levelized cost of energy (LCOE) from onshore wind power in USA, is approximately 50% lower now than it was four years ago, and the lowest cost onshore wind projects now have a LCOE that is 33% lower than it was four years ago. As can be seen on the graph at left.

The lowest cost wind projects in the USA now have a LCOE of 32 USD/MWh. The lowest cost projects are mainly wind farms in the US Mid-West, where wind conditions are good, resulting in a high average capacity factor. And even though the lowest cost was steady (did not decline) between 2015 and 2016, new very large wind farms can be expected to offer even lower cost than 32 USD/MWh. For example, Morocco did receive average bids from Enel and Siemens of 30 USD/MWh from its tender for totally 850 MW wind energy projects (with the lowest offer at around 25 USD/MWh).

kvika-poyry_electricity-generation-cost-lcoe-iceland-slide-13-with-more-recent-figures-2For the Icelandic energy sector, it is interesting to compare the figures in the reports from Lazard on LCOE, with a recent report by Kvika bank and Pöyry. In the report by Kvika/Pöyry the LCOE for up to 6 TWh of new onshore wind power in Iceland is set at a fixed price (LCOE) of approximately 51-52 EUR/MWh. This is quite close to the average LCOE for onshore wind in USA as assumed by Lazard in 2015 (shown with red line on the graph at left).

When having regard to Lazard’s most recent report, from December 2016, it becomes obvious that the LCOE for onshore wind has declined further (the blue line on the graph shows Lazard’s average for onshore wind in its report from 2016). What then becomes especially important, is that now new onshore wind projects in Iceland can be expected to be even more economical than new geothermal projects. For more information on this issue, we refer to our earlier post on the subject.

Highly competitive wind power

In their recent report on subsea electric cable between Iceland and Britain, Kvika bank and Pöyry predict what new power projects will be developed in Iceland to fulfill the electricity demand. In this article we will focus on why wind power is likely to be an important part of the power development in Iceland. Also we will explain how the information in the said report about cost of wind generation is outdated, and how wind power in Iceland is far more competitive than presented in the report.

According to the report by Kvika and Pöyry, levelized cost of energy (LCOE) for 6 TWh of new wind power generation in Iceland will on average be approximately 51-52 EUR/MWh (as can be seen on the top-slide below, which is from a presentation by Kvika/Pöyry). It is interesting to compare this cost figure with LCOE for wind generation as represented by the financial firm Lazard. Note that the cost figures presented by Lazard are in USD, and here we use the average exchange rate in 2016, where one USD equals 0.9 EUR.

  • In 2014, Lazard LCOE for onshore wind was 33-73 EUR/MWh (with 53 EUR/MWh as average).
  • In 2015, Lazard LCOE for onshore wind was 29-69 EUR/MWh (with 49 EUR/MWh as average).
  • In 2016, Lazard LCOE for onshore wind was 29-56 EUR/MWh (with 42.50 EUR/MWh as average).

kvika-poyry_electricity-generation-cost-lcoe-iceland-slide-13The report by Kvika/Pöyry, mentioned above, was officially published around mid-year 2016. However, the main work on the report took place in the latter half of 2015. This means that the most recent LCOE-figures for wind power available when the research for the report was ongoing, were LCOE-calculations for the year of 2014.  Thus, it may not be surprising that the average LCOE for wind in the report by Kvika/Pöyry is close to Lazard’s result as presented in their report from September 2014 (LCOE version 8.0). The numbers are 51-52 EUR/MWh and 53 EUR/MWh, respectively.

We want to emphasise that Kvika/Pöyry did not use Lazard as a reference. Instead, the assumed LCOE in the report by Kvika/Pöyry is based on numbers from IRENA (IRENA Power Costs Report 2014, published in January 2015). It is also important to keep in mind that cost figures used by Kvika/Pöyry included the average cost of linking wind power farms to the grid.

However, what is especially important is how the figures for LCOE of wind power generation were presented in the work by Kvika/Pöyry. While the companies estimated the cost of each new geothermal- and hydro project to be developed, they simply used the average LCOE for wind (approximately 51-52 EUR/MWh) as a fixed LCOE for all new wind power projects in Iceland generating up to 6 TWh annually. Which is a very general and/or imprecise presentation of LCOE for wind.

kvika-poyry_electricity-generation-cost-lcoe-iceland-corrected-2017It would have been much clearer, for the comparison, to estimate not only average cost of wind, but also the lower cost and the higher cost of wind power, when developing 6 TWh of new wind generation. Having regard to the figures from Lazard, it can be expected that such a methodology would have resulted in a LCOE between 33-73 EUR/MWh. This is reflected by the red line on the graph at left (the average cost being the same as estimated by Kvika/Pöyry).

It should also be noted that due to good wind conditions in Iceland, the average cost of 6 TWh of new wind generation development might be even lower than the average given by Lazard or IRENA. Then, more than 2 TWh and possibly up to 3 TWh of new wind generation might be less costly than the high-cost geothermal projects planned in Iceland.

What now becomes quite clear, is how substantial low-cost wind power can be expected to be developed in Iceland, before constructing some of the new high-cost geothermal plants. It seems likely that at least up to 2 TWh of new wind power may be developed in Iceland much earlier than projected by Kvika/Pöyry. This conclusion was missing in the work of Kvika/Pöyry. As a result, Kvika/Pöyry under-estimated the possibilities of wind power in Iceland in the coming years.

kvika-poyry_electricity-generation-cost-lcoe-iceland-corrected_lazard-2017In addition, the cost figures used in the report by Kvika/Pöyry may already be outdated. LCOE for onshore wind has gradually been decreasing. Therefore, wind power may develop faster in Iceland than in the scenario(s) presented by Kvika/Pöyry. According to the most recent report by Lazard (version 10.0 from December 2016), LCOE for wind in the USA is now estimated to be between 28 and 56 EUR/MWh (with an average of 42 EUR/MWh).

These figures are strong arguments for assuming wind power in Iceland will be even more competitive than predicted a couple of years ago. This is explained by the additional red line on the last graph, which is based on the most recent figures from Lazard. The conclusion is that wind parks at sites in Iceland offering high capacity factor, will be more economical than some – or even many – of the geothermal projects now being considered in Iceland.

200 MW Búrfell Wind Park rejected by NPA

So far no wind farm has been constructed in Iceland. However, due to good wind conditions in the country and declining cost in wind power technology and generation, it is probably only a matter of time until we will see the first wind farm operating in Iceland.

Unfortunately, many of the best locations for wind farms in Iceland may be excluded from development, due to protection of the wilderness of the Icelandic highlands. The Icelandic National Planning Agency (NPA) recently gave its opinion on the environmental impact assessment (EIA) of the proposed 200 MW Búrfell Wind Farm (Búrfellslundur). This is an ambitious wind project, which the Icelandic National Power Company (Landsvirkjun) has been preparing for years, in the highlands of Southern Iceland.

The NPA concluded that the Búrfellslundur Wind Farm would have significant impact on the landscape and wilderness in the area, as well as on tourism and recreation. Furthermore, the NPA recommends that the power company should find another more suitable location, or scaling down the project. Both solutions would require a new environmental impact assessment.

iceland-wind-turbines-burfellThis opinion of the NPA means that Landsvirkjun’s first real wind farm project will be delayed. The company has already constructed two wind mills in the Búrfell area by Þjórsá river (photo at left), as part of a research and development project on the feasibility of wind power in Iceland. According to a statement from Landsvirkjun’s manager of wind projects, in 2015, the plan was to have the 200 MW Búrfell Wind Farm in operation as early as autumn 2017. Now, this plan has to be revised.

The Búrfell Wind Farm, as proposed by Landsvirkjun, would consist of up to 67 turbines, each with a maximum height of 150 m (to the tip of the blade). Each turbine was expected to have a capacity of 3-3.5 MW. Total capacity would have been close to 200 MW, generating approx. 705 GWh annually.

The main reason why the NPA gave a negative opinion regarding the project, is the location of the proposed wind farm. In March 2016, the Icelandic Parliament (Allþingi) adopted a special National Planning Strategy (Landsskipulagsstefna 2015-2026), emphasizing the environmental importance of the vast wilderness areas normally referred to as the central highlands of Iceland. According to the NPA, a 200 MW wind farm in the Búrfell-area does not align with the National Planning Strategy, thus recommending the power company to find another location for its wind farm, or scaling the project down.

landsvirkjun-burfell-wind-farm-proposal-1The area that was proposed for the wind farm by Landsvirkjun, spans up to 40 km2 of lava and sand plain. It is noteworthy that in the vicinity of this area, there are already two wind turbines (as mentioned above), in addition to several nearby large hydropower stations, with the relevant dams, reservoirs, transmission lines etc. However, the NPA is of the opinion that dozens of large wind turbines in the area will have such a strong visual effects it does not align with the recent National Planning Strategy.

Having to find another location for its first wind farm will be a disappointment for Landsvirkjun, as the area at Búrfell offers very high capacity factor for harnessing wind energy. According to information from Landsvirkjun, the Búrfell Wind Farm could be expected to deliver an average capacity factor of close to 50%, which is substantially higher than most wind farms in the world enjoy.

landsvirkjun-burfell-wind-farm-proposal-illustrationThe negative opinion of the NPA towards the project is obviously not what Landsvirkjun was expecting. The power company has for several years put enormous work and effort in preparing the Búrfell Wind Farm, including foreign consulting to ensure high quality development of the environmental impact assessment. However, it was always clear that placing large wind turbines within the wilderness areas close to the volcanic Mt. Hekla, and adjacent to popular tourist routes, would be controversial.

The decision of the NPA regarding the Búrfell Wind Farm will delay wind power development by Landsvirkjun. On the positive side, Landsvirkjun and other power companies now have the possibility to take note of an opinion by the NPA on wind power projects, in finding locations that are suitable for such major constructions. As there are numerous locations in Iceland that offer very high capacity factor for wind turbines, there is good reason to be optimistic on prosperous development of wind energy in Iceland in the coming years and decades.

Iceland’s new energy segment

If the IceLink HVDC subsea interconnector between Iceland and UK, will be developed, more than 2,000 new megawatts (MW) of power capacity is expected to be developed in Iceland in the coming two decades. All these capacity additions will all be in renewable power technology. Most of it will be in the traditional types of Icelandic electricity generation, which is hydro- and geothermal power. However, substantial amount of the new capacity will be in wind power, making wind power the fastest growing type of generation in Iceland.

Low-Cost Wind means Slower Growing Geothermal

It is hard to predict with precision how much capacity will be added to each of the three types of renewable generation mentioned above. The table below shows two predictions, one by Kvika/Pöyry and the other by Askja Energy Partners. According to Kvika/Pöyry, IceLink will need approximately 1,459 MW of new capacity, bringing total new capacity in Iceland to 2,137 MW by 2035.

Analysis of Askja Energy shows that Kvika/Pöyry may be over-estimating how fast new geothermal power can be developed in Iceland (and under-estimating the potentials of Icelandic wind power). We at Askja Energy, predict slower growth in new Icelandic geothermal power, and somewhat faster growth in wind power. In addition, it is very likely that new Icelandic hydropower can be developed somewhat faster than Kvika and Pöyry are forecasting in their central scenario.

Table: New power capacity (MW) in Iceland until 2035
Central scenario with IceLink HVDC cable
Forecast by Forecast by
Technology Kvika/Pöyry Askja Energy
Geothermal 722 580
Hydro 865 933
Wind 550 768
Total new capacity added 2,137 2,281

Note that the Askja Energy scenario assumes faster capacity additions in hydropower and wind power than Kvika/Pöyry, but substantially slower geothermal capacity additions. The result is less generation pr. each new MW (thus, higher new capacity needed in total to deliver same/similar generation). All numbers are an estimation and may vary, such as due to what power projects exactly (in each category) will be developed.

Wind Power the Fastest Growing Segment

No matter if the forecast by Askja Energy or the forecast by Kvika/Pöyry will be closer to the real development, wind power can be expected to become Iceland’s fastest growing energy segment. If IceLink will be constructed, no type of generation in Iceland will grow as fast (in percentages) as wind power. As explained on the graph below.

iceland-power-capacity-additions-until-2035_ketill-sigurjonsson-2016The question that remains, is if and when the decision will be taken on IceLink. But even without IceLink, it is likely that new wind power will be developed in Iceland in the coming years, as numerous locations in Iceland offer very high capacity factor for wind turbines.

Pöyry overestimating Icelandic geothermal

In their recent report titled “Subsea electric cable between Iceland and Britain – cost-benefit analysis”, Kvika bank and Pöyry seem to overestimate how fast Icelandic geothermal power can be developed. In their central-scenario, having regard to new demand from the IceLink subsea power cable, Kvika and Pöyry predict that by 2025 Iceland may have developed 820 MW of new geothermal capacity. This is somewhat surprising estimation, as it seems unrealistic to expect such a fast construction of new geothermal plants in Iceland.

kvika-poyry-iceland-new-electricity-generation-until-2035

According to Kvika and Pöyry, Iceland will need around 1,416 MW of new power capacity by 2025 if IceLink will be constructed. As shown on the graphs at left and below, Kvika/Pöyry expect most of this new capacity to be in new geothermal power plants, with a capacity of 820 MW. According to their report, 785 MW will be new traditional geothermal power plants and 35 MW will be smaller low temperature geothermal stations (totally 820 MW in new geothermal power).

The rest of the needed capacity by 2025, around 596 MW, is expected to include 448 MW in hydropower refurbishment (such as added capacity in current hydro stations), 93 MW in new large hydropower plants, and 55 MW in new small hydropower plants. Note that the exact predicted megawatts for each category are not absolute figures, so for each category there may be a few more or less MW. Thus, it is maybe not very surprising that the given figures in Pöyry’s slide-presentation for hydropower refurbishment, do not quite match (450/448), as can be seen on the graphs and also here on Twitter.

kvika-poyry-iceland-new-electricity-generation-until-2035-graphIceland offers very good geology for geothermal power development. However, it is costly and complicated to sufficiently establish and harness the geothermal resource in each new area. Having regard to the Icelandic experience in geothermal development so far, 785 MW of new large geothermal power stations may call for approximately eight to ten new development areas, each area with close to 100 MW of power capacity constructed in preferably two steps (starting with 50 MW or so).

There may be some possibilities to construct new Icelandic geothermal stations with 100 MW capacity before 2025. However, such an intensive construction/utilization in a new area could substantially increase the risk of over-exploitation of the geothermal area. And it is also important to have in mind that due to environmental regulations, such as regarding planning and impact assessment, it becomes even more unlikely that up to ten new geothermal projects can be developed in Iceland in less than a decade.

This does not mean that Iceland would not be able to deliver the power needed for IceLink in time. Due to well-known hydropower opportunities and good wind potentials, economical wind- and hydropower (in addition to substantial new geothermal power) would most likely ensure sufficient power supply for IceLink. But the scenario for each power category (geothermal, hydro, and wind) will most likely be somewhat different from what Kvika/Pöyry estimate.

For some reason, Kvika/Pöyry made little effort to cost-analyze the development of wind power in Iceland. Having regard to numerous good sites for high-capacity wind farms in Iceland, it can be argued that wind power can fill in the gap which may occur due to slower than expected development of geothermal power. In our next article, we will be looking further into this issue, explaining how much wind power may be developed in Iceland in the coming decade.

Pöyry’s analysis on Icelandic wind power potentials

Following a tender in 2015, the Icelandic Ministry for Industries and Innovation signed Kvika bank and Pöyry to deliver advanced macroeconomic cost-benefit analysis of the impact of a subsea power cable between Iceland and Great Britain on Icelandic society. The report was published around mid-year 2016. The Icelandic title of the report is “Raforkusæstrengur milli Íslands og Bretlands, kostnaðar- og ábatagreining“, which in English would read as “Subsea electric cable between Iceland and Britain – cost-benefit analysis”.

The key assumptions of the report are based on the following issues: Development of electricity demand in Iceland, the possibilities of new electricity generation in Iceland (including wind power), the cost of the project (including cost of the subsea interconnector, converter stations, new power capacity, and new transmission lines), cable-capacity and cable-uptime, cost of capital, development of electricity prices in the UK, and possible support from the British government. These issues include a.o. analysis on how much new hydro-, geothermal- and wind power capacity is expected to be constructed in Iceland until 2035.

kvika-poyry-icelink-report-2016-coverThe report by Kvika/Pöyry is highly interesting and includes extensive information which is very relevant to the project. However, it is obvious that its authors have made little effort in analyzing the possibilities of Icelandic wind power. This becomes evident when reading the part of the report that focuses on wind power (chapter 15.3.3). It is also noteworthy that the report makes absolutely no reference to the numerous recent university theses on Icelandic wind energy. And very limited direct references are made to the scientific paperThe wind energy potential of Iceland” by Nawri et.al., which so far is probably the main scientific examination on Icelandic wind potential.

The result is that the report by Kvika/Pöyry only offers a somewhat general introduction of wind energy utilization, without any real analysis on the potentials of harnessing wind for electricity generation in Iceland. The authors of the report simply make the general claim that wind power is still more costly than most planned hydro- and geothermal power projects in the utilization category of the Icelandic Master Plan for Nature Protection and Energy Utilization. This claim is not very well supported in the report. But the result is a conclusion by Kvika/Pöyry, that it is unlikely that any wind power will be harnessed in Iceland unless the IceLink HVDC subsea interconnector will be constructed.

wind-lcoe-history_lazard_askja-energy-partners-2016It should be noted that many of the power projects, described in the utilization category of the said Master Plan, have an expected LCOE between 40 and 50 USD/MWh (this especially applies to the geothermal projects). Having those cost figures in mind, it is interesting that high capacity wind locations outside Iceland offer as low LCOE as 32 USD/MWh (as explained by Lazard) and in rare cases even lower. When also having regard to other recent wind projects in high capacity areas, it seems clear that such projects offer LCOE that is lower than the expected cost of some of the planned geothermal projects in Iceland.

We could refer to several other recent wind power cost-analysis for the same outcome. As an example, Goldman Sachs expects onshore wind costs to fall into the range of 30-35 USD/MWh due to technology advancements. With this all is mind, it would have been both interesting and important if Kvika/Pöyry would have made further effort to analyze the potentials and cost of possible upcoming wind power projects in Iceland.

Of course it is also important to remember that extensive wind capacity may call for an increase in backup power. The extra cost due to such capacity additions may indeed make wind power more costly than explained by simple LCOE-analysis. However, the general assumption by Kvika/Pöyry, declaring Icelandic wind power in most cases more expensive than geothermal power in Iceland, seems somewhat hasty. The result may be an under-estimation of the potential of Icelandic wind power. And due to sensitivity of geothermal resources to over-exploitation, it is even possible that the expected fast-capacity growth of geothermal power in Iceland may in fact be an over-estimation.

—————————————–

The report by Kvika/Pöyry is officially only available in Icelandic. To give our readers a clear idea about how the report explains and analyses wind energy, we hereby publish an English translation of the part of the report that focuses on wind power (chapter 15.3.3). Note that the somewhat long sentences and un-precise references simply reflect how the Icelandic text is put forward in the report. And we express that all the following text is a translation of chapter 15.3.3 in the report, so the text does not reflect opinions of the Icelandic Energy Portal.

—————————————–

Chapter 15.3.3:   Options for Onshore Wind Power in Iceland

Wind is a well-known energy source. In recent years, technological development has made wind turbines more efficient and more stable. Also, the cost of constructing and operating onshore wind farms have decreased significantly in a short time, as seen on figure 106. Thus, wind power is closer to becoming competitive with other new energy projects in Iceland. Wind energy is increasingly harnessed worldwide. It is estimated that by 2020, the installed capacity of wind power in the world will be 1,000 GW, or as much as the hydropower in the world today.

kvika-poyry-icelink-report-2016-fig-106[Fig. 106 – Cost of onshore turbines (2014 USD/kW). Sources: Berkeley lab and US Energy Ministry; US Energy Ministry Wind Technology Market Report 2014. Link to source.].

Given the limited environmental impact of wind power compared to prolonged or permanent impact of hydropower, wind power should be considered as an important option for renewable energy production, especially in a country like Iceland, which has great wind power potential and is sparsely populated. [Ref. 215: Icelandic Meteorological Office, Wind energy potentials in Iceland 2013].

Windmills need to be connected to the grid, which preferably should be close to the location of the windmill. It also makes sense to take population density and tourism into account when deciding where to locate windmills, as many feel they spoil the beauty of the landscape in which they stand. All in all, numerous factors need to be taken into account when deciding where to locate windmills. [Ref 216: Wind energy as option in Iceland 2012, Environmental considerations, James Dannyell Maddisson and Rannvá Danielsen]. 

kvika-poyry-icelink-report-2016-table-30In 2014, Europe had 12,820 MW of installed wind power capacity. [Ref 217: Wind energy in Energy statistics 2014 and wind energy scenarios for the year 2030, European Wind Energy Association 2015]. Table no. 30 shows the installed wind power in selected European countries by end of 2014 and forecast for 2030. [Table 30 – Installed wind energy capacity in some European countries and forecast for 2030. Source: European Wind Energy Association].

By end of 2014, installed onshore wind power capacity in Iceland was only 3 MW. Landsvirkjun [the national power company] has presented plans for two onshore wind farms to be evaluated in the third phase of the Master Plan [Icelandic Master Plan for Nature Protection and Energy Utilization]; one wind farm with an installed capacity of 200 MW delivering up to 705 GWh/year and the other 100 MW delivering up to 350 GWh/year, a total of 300 MW and more than 1 TWh/year. Private parties, both domestic and foreign, have also been exploring the possibility of building and operating onshore wind farms in Iceland.

By end of 2014, Norway had constructed wind parks with an installed capacity of 856 MW, delivering an average of 2.2 TWh of electricity annually, with 31% capacity factor [ref 218: Governing department of water resources and energy matters in Norway, NVE], which constitutes to 1.2% of the country’s electricity generation. See Figure 107 – Installed capacity of wind power in Norway.

kvika-poyry-icelink-report-2016-fig-107[Fig. 107 – Installed capacity of wind power stations in Norway; 1997-2014 (MW)].

The development of wind power in Norway has so far not been economical without subsidies and the wind farms that have been constructed have been subject to subsidies. Yet, Norway has in general good wind resources, compared to other countries. By the start of 2014, new wind power projects with a generation of about 9.1 TWh/year had been authorized in the country. However, it is unclear whether all this power will be developed. The possibility, however, exists if market conditions supports the investment, all the necessary planning has been completed, and permits have been given. [Ref 219: Figures from 2015, Energy- and water resources in Norway, Norwegian Oil and Energy Ministry]. Iceland is very well suited for electricity generation by onshore wind, as shown in Figure 108, which shows the average wind speed at 80 m height .

kvika-poyry-icelink-report-2016-fig-108[Fig. 108 – Average wind speed on Earth. Source: World Wind Energy Association. Global evaluation on wind resources. December 2014. Link to source].

Wind measurements give very good results and a limiting factor for the development of wind energy in Iceland will not be lack of wind, but political and environmental concern, proximity to other industries and services, power transmission and wholesale prices of electricity. In our simulation, the cost of onshore wind power is set higher than most other options and thus large-scale wind power development is not expected unless domestic demand will grow much or a subsea cable will be laid. This may change if the cost of new onshore wind power plants continues to decline. Thus, onshore wind energy could become a more economical option than geothermal power plants in the near future.

%d bloggers like this: