Skip to content

Archive for

Surprising claims about IceLink in the Financial Times

The Financial Times (FT) has published an interesting article, titled City financier urges UK support for £3.5bn Icelandic power cable – Plan to send geothermal electricity 1,000 miles under the sea to north-east England. The article is written by Andrew Ward, Energy Editor at Financial Times.

edmund-truell-icelink-hvdc-cableAccording to the article, the City financier Edmund Truell has “plans to open a £200m cable factory in the north-east of England if the government backs his project to build a £3.5bn undersea cable connecting the UK to geothermal power from the hot springs of Iceland.”  Actually, the article draws up a somewhat surprising and/or imprecise picture of the project, as explained here:

IceLink is indeed an interesting project. But is doubtful that Mr Truell’s proposal is the “most detailed” plan on the cable to emerge, as stated in FT. So far, the most detailed official document on the project yet, is a recent report by Kvika Bank and Pöyry (the report was published last summer but is in Icelandic only). Numerous of the comments made by Mr. Truell do not align well with this report.

According to Mr. Truell’s comments to the FT, “Iceland could supply 1.2 gigawatts of baseload power”. From this comment it seems that Mr. Truell has somewhat unclear understanding about how the project is seen by the governments of Iceland and UK.

The plan is not really sending “geothermal electricity” to UK. Nor will the cable serve as access to base-load power, but rather be access to a flexible hydro power source. Readers should note that Iceland’s power system is mostly based on hydropower. The idea regarding the cable is mainly to utilize large hydro reservoirs to offer access to highly flexible renewable power source.

Of course part of the power would be from geothermal sources (and also from onshore wind power which is likely to be constructed in Iceland). But the main power source for the cable would/will be the hydropower. In fact Iceland’s main problems in the power sector now relate to too fast construction of geothermal power plants. As was recently explained here on the Icelandic Energy Portal.

Iceland-Europe-HVDC-Interconnector-Landsvirkjun-Map_Askja-Energy-PartnersIt is possible that the cable would have a capacity of 1,2 GW. However, it is somewhat imprecise that the cable would offer a “supply of 1,2 gigawatts”, as Mr. Truell says to the FT. What really matters is how much electricity would be sent through the cable. According to plans introduced in Iceland, the annual amount is likely to be close to 5,000 GWh (5 TWh). This is the important power figure, rather than the capacity of the cable (which has not yet been decided and might be somewhat lower than the claimed 1,200 MW).

The length of the cable might indeed become 1,000 miles, as Mr. Truell is quoted to say in FT. But according to plans presented in Iceland it is more likely that the length would be closer to 750 miles. In the end the length will of course greatly depend on where the cable will/would come on land in Great Britain. No such decision has been taken yet.

According to reports presented in Iceland, the cost of the cable is not expected to be 3.5 billion GBP, as says in the FT article, but rather close to 2.4 billion GBP (central scenario). Total cost of the whole project would of course be a lot higher figure, due to the cost of new power plants and new transmission lines within Iceland. According to the Icelandic ministry of Industries and Innovation the total cost of the whole project would be 5-6 billion GBP (ISK 800 billion).

According to Mr. Truell, UK would get the electricity from Iceland at about 80 GBP/MWh. This figure is probably 25% to low (when having in mind the cost of the transmission from Iceland to UK). According to Pöyry, likely price would probably not be lower than close to 100 GBP/MWh.

urridafoss-vrirkjunIn the article in FT, it says that Iceland has offered “surplus electricity” to aluminium smelters, and Mr Truell says there is “still plenty left for export”. In reality the situation is a bit more complex. Currently, there is very little surplus-electricity in the Icelandic power system. It is expected that IceLink would need close to 1,500 MW of new capacity.  To be able to supply the subsea interconnector with electricity, Iceland would need to build numerous new and quite expensive power plants. Such plants would harness hydro, geothermal and wind. Also Iceland would need to strengthen its transmission system. So the cable would mean huge new investment in the Icelandic power system and the project is only partly based on “surplus” electricity.

An electric subsea HVDC cable between Iceland and the UK is indeed an interesting opportunity, such as to increase the amount of reliable and flexible renewable energy in UK’s power consumption. And it would be wise for the UK to make the project a priority. However, note that Iceland is not at all an endless source of green power. And the people of Iceland will hardly have much interest in such a project unless receiving strong economical gains from it. In addition the project would/will be a major environmental issue in Iceland, due to impacts from constructing new power plants and transmission lines. And to avoid misunderstanding about the project it is extremely important to have the facts right.

Facts or fiction about IceLink?

The IceLink subsea interconnector is a proposed power cable that would connect the power markets of Iceland and Great Britain (UK). On the website of Icelandic national power company Landsvirkjun, the rational for the IceLink cable is described. In this article we will fact-check this rationale:

Claim no.1:  IceLink lifts the isolation of the Icelandic electricity market and it assists Europe to achieve interconnection capacity targets amounting to 10% of installed capacity, and it opens up new markets for both Icelandic and UK suppliers.

  • Correct: The Icelandic power market is isolated. With IceLink, that would change.
  • Correct: IceLink would be part of Europe’s projects to achieve interconnection capacity targets.
  • Correct: IceLink do open up new markets for Icelandic and UK suppliers.

The EU Commission has set a target of 10% electricity interconnection by 2020. This means that all EU countries should construct electricity cables that allow at least 10% of the electricity produced by their power plants to be transported across its borders to its neighboring countries. However, IceLink will not be ready by 2020. Thus, it seems likely that the IceLink project would rather become a part of EU’s new energy policy and targets for 2030. In fact, this development or process has already started.

lv-hvdc-subsea-power-cables-mapThe EU Commission has already proposed to extend the interconnection target from 19% to 15% by 2030. The targets will be reached through the implementation of Projects of Common Interest. A new special expert group on electricity interconnection targets established by the EU Commission  had its first meeting in Brussels on 17th and 18th October 2016. It is yet to be seen what will become the new interconnection target for each of the EU member states, but so far the UK’s share is only less than 5%. In 2015 domestic installed capacity in GB was 91 GW, while total capacity of interconnectors between UK and other countries was 4 GW.

Regarding IceLink opening up new markets, it should be noted that the general power market in Iceland is very small compared to GB or UK. Thus, for suppliers in the UK the Icelandic power market is probably not very interesting. However, it might be positive for suppliers of wind energy in Scotland to have access to Iceland, as we will now explain:

Claim no.2:  Through bi-directional flows, IceLink could potentially reduce the cost of managing constraints between northern GB and the major consumption centres further south as energy is directed to Iceland at times of excess wind power generation in the north, stored in hydro reservoirs, and returned at times of lower wind output.

  • Correct: IceLink would open up the possibility to store for example Scottish wind power in Iceland’s reservoirs.
  • Correct: During time of low wind in Scotland, Icelandic hydropower stations could be utilized to bring  the wind power back to Scotland.

Claim no.3:  By providing flexible energy in near term spot markets and the balancing mechanism, IceLink can lower the cost of balancing, in particular in a system with a high penetration of intermittent generation.

  • Possibly: There is a possibility that IceLink would lower the cost of balancing electricity supply/demand. However, this of course depends on several factors, such as the British capacity market.

Claim no.4:  IceLink connects currently isolated Iceland´s renewable electricity system with the broader European system and offers a means to decrease Europe´s dependency on imported fossil fuels in a cost efficient way.

  • Correct, but not very relevant: IceLink is expected to offer the UK (and thus the European system) access to approx. 5,000 GWh annually. The current total annual electricity consumption in the UK is close to 335,000 GWh. Access to power generated in Iceland would thus only add a fraction to the current power supplied and consumed in the UK.

However, note that in 2015 the renewable power generation in the UK was close to 83 TW, so an addition of 5 TWh of renewable generation is substantial. This of course means that IceLink would in fact make UK (and Europe) a little bit less dependent on power from for example coal and natural gas (fossil fuels)

Claim no.5: IceLink increases diversity of power supply at both ends and enhances further deployment of renewables through coupling highly flexible hydro generation with that of intermittent wind and solar generation.

  • Correct: Iceland and UK utilize different sources for their power generation. While UK is mainly dependent on natural gas, coal and nuclear energy for its power generation, Iceland utilizes hydro and geothermal for close to all its generation. Moreover, most of the generation in Iceland comes from hydro. IceLink will thus indeed increase diversity of the power supply, and Iceland’s flexible hydro power is perfect to balance supply and demand while solar and wind power fluctuates.

Claim no.6: IceLink delivers reliable and flexible energy into the GB system at times of thin supply margins.

  • Correct: IceLink could indeed deliver reliable and flexible energy into the GB/UK system at times of thin supply margins. To better understand the importance of access to flexible hydropower, based on large reservoirs, we would like to refer to our earlier article; IceLink offers flexibility rather than base load power.

Claim no.7: IceLink allows energy to flow to Iceland at times of low hydro generation potential, e.g. due to unusually low precipitation levels.

  • Correct: Every few years, the Icelandic reservoirs fill up quite late due to low precipitation or cold weather (resulting in low glacial melting). This decreases the efficiency of the Icelandic hydropower stations and adds a risk to the system. With IceLink this risk would become less.

Claim no.8: Iceland generation is 100% renewable. The interconnector would provide an export opportunity for the surplus energy in the renewable hydro system that is not currently harnessed due to economical and operational limitations.

  • Correct: The closed Icelandic electricity system is constructed in the manner of securing stable supply to heavy industries (especially to aluminum smelters, who need stable power supply 24/7 all year around). In years with unusually much precipitation or heavy glacial melting (warm periods), excess amounts of water runs into the reservoirs, resulting in overflow. Turbines could be added to harness this excess, but such development is costly and not economic unless having access to a market where power prices are higher than in Iceland. IceLink would create access to such a market.

Claim no.9: The UK has committed itself to ambitious reduction of greenhouse gas emissions. IceLink contributes with its lower cost of low carbon energy compared to domestic marginal alternatives and its flexibility contributes to reducing the cost of enabling the integration of UK intermittent renewables.

  • Correct: Even though the Icelandic geothermal,- hydro- and wind power sources are fairly limited when having regard to the enormous size of the British power market, it would make economic sense for the UK to buy Icelandic renewable power instead of for example more expensive British offshore wind power. For more on this subject, we refer to our earlier article; UK’s electricity strike prices positive for IceLink. And we can add that even though strike prices for new offshore wind power seems to be coming down quite fast, electricity from Iceland could be substantially cheaper than new offshore wind farms off the British coast.

Claim no.10: IceLink involves the deployment of relatively mature low carbon technologies. As such, it allows GB to reduce reliance on particular domestic technologies, thereby reducing exposure to lower than expected cost reduction trajectories.

  • Correct: Currently, almost all power generation in Iceland comes from mature geothermal- and hydro technology. In the coming years and decades the Icelandic power sector is likely to also start utilizing wind power on land – which is also a mature technology and less problematic than offshore wind power.

The conclusion is that most of the claims set forward by Landsvirkjun, regarding IceLink, are not only correct but also very relevant. However, it is possible that the project could be delayed by Britain’s decision to leave the European Union.

%d bloggers like this: