Skip to content

The green transformation of DONG Energy

Danish energy firm DONG Energy is in the process of selling all its oil and gas business. This is part of a major strategy where DONG is to lead the way in the transformation to a sustainable energy system and to create a leading green energy company.

Away from oil and gas

DONG’s oil and gas business on the continental shelf of Denmark, Norway and the United Kingdom has for decades been a core part of the company. According to Henrik Poulsen, CEO of DONG, the company now aims at selling all its oil and gas fields as one package, already this year (2017).

It has not been revealed who the potential buyer is. According to Danish media the most likely candidates are Maersk Oil and the US private equity fund EIG Global Energy Partners. EIG is the investor behind the company Chrysaor, which few days ago bought a variety of oil and gas fields in the North Sea from Shell.

Focusing on renewable power generation

dong-energy-green-transformation_2016DONG is also transforming its power production, by out-phasing coal. Not long ago coal used to be the overwhelming source for DONG’s (and Denmark’s) electricity- and heat generation. During the last ten years, DONG has reduced its coal consumption by 73% and is now aiming at phasing out coal completely from its power and heat generation by 2023. This will happen by replacing coal with sustainable biomass, at the same time as DONG will increase wind power generation.

dong-energy-mix_2006-2016-1This means that in just one decade, DONG Energy will have gone from being one of the most coal-intensive utilities in Europe to being among the greenest energy companies on the continent, being able to compare it self with Norwegian Statkraft and Icelandic Landsvirkjun.

Thus it may be no surprise that DONG now has launched a competition where Danes can try out their knowledge on green energy – and the winner will be awarded a week travel trip to Iceland. Iceland is of course the only European country fulfilling all its electricity consumption with renewable power generation. In addition, most of Iceland’s heating is supplied by utilisation geothermal sources, making Iceland the greenest energy country in Europe.

dong-energy-award-iceland-trip_2017

Does Facebook not want truly GREEN data centers?

facebook-zuckerberg-datacentre_screen-shot-2017-01-22-at-18-14-02Two years ago, we where wondering if Apple does not want truly green data centers. Now we might ask if this also applies to Facebook. Because it seems that Facebook is in fact not to keen on truly green data centers.

According to an announcement published in last January (2017), Facebook is going to build a new data centre in the Danish city of Odense, on the island of Funen (Fyn) west of Copenhagen. At a press conference with local authorities, the California-based tech company said this data centre to be the companies third such facility outside of USA.

And Facebook’s director of data center operations, Niall McEntegart, was quoted saying that “the Odense data centre will be one of the most advanced, energy-efficient data centers in the world”. It was also stated by Facebook management that the Odense data centre will be powered exclusively by renewable energy.

This is going to be an investment of more than USD 100 millions, and will provide 150 jobs when operational (in 2020). But in fact this new data centre will hardly be powered by 100% renewable energy.

denmark-gross-electricity-consumption_1990-2015-with-forecast-to-2025_table-from-energinet-denmark_sept-2016Surely Denmark generates substantial amount of its electricity by utilising renewable sources (mostly wind). Also, Denmark has interconnectors with major hydro power countries, like Sweden and Norway. However, the fact is that very large share of the electricity people and businesses in Denmark consume, is generated by burning fossil fuels (mostly coal).

According to the most recent information from the European Union, (see table here), the renewable’s share of Denmark’s gross electricity consumption in 2014 was close to 45 percent. More recent information from the Danish transmission system operator (TSO), Energinet, tells us that the share of renewable energy in net generation of 2015 was close to 67%. And according to Energinet, even in 2025 fossil fuels will be an important part of Denmark’s power mix (as explained on the graph at left).

facebook-data-centre_odense-denmark-electricity-supply-mapHaving regard to the facts, it is hardly correct to say that a data centre located in Denmark, connected to the grid.  will be run entirely on renewable energy sources only. Obviously Facebook intends to buy so-called Green Certificates, which are a tradable commodity proving that certain amount of electricity is generated using renewable energy sources only. However, this does not mean that the electricity being consumed by the buyer of the certificate is from renewable sources – it might as well be from a coal power station in Denmark or from a nuclear plant in Sweden.

The result is that every data centre in Denmark, connected to the grid, will in fact be using electricity from all kinds of power plants, including for example coal power stations. If Facebook truly wants to run its data centre on 100% renewable energy, the company should connect the data centre to a grid that only delivers electricity from renewable sources. In Europe probably no grid comes as close to this as in Iceland.

Iceland produces close to 99.9 percent of its electricity by utilising hydro- and geothermal power (and some wind power). So instead of claiming its data centre in Denmark being powered by 100% renewable energy, Facebook should consider Iceland as the location for its next data centre in Europe.

Hellisheiði geothermal plant to be sold?

A firm called MJDB has made offer to buy the Hellisheiði geothermal plant in SW-Iceland.

hellisheidivirkjun_geothermal_power_plantThe Hellisheiði plant is the largest and most recent geothermal plant in Iceland, starting operation in 2003 (the next geothermal plant in Iceland will be the 45 MW station at Þeistareykir in NE-Iceland). Hellisheiði station has a generation capacity of 303 MW and 130 MW in thermal energy. It is owned and operated by the energy firm Orka náttúrunnar (ON), which is a subsidiary of Orkuveita Reykjavíkur (OR); sometimes referred to as Reykjavík Energy. OR / Reykjavík Energy is owned by the city of Reykjavík and couple of other municipalities in SW-Iceland.

The thermal production from the Hellisheiði geothermal station is mainly used by households and businesses in the capital area of Reykjavík. Most of the electricity generated by the plant is sold to the Norðurál aluminum smelter, owned by Century Aluminum.

Not much public information is available about the interested buyer; MJDB. According to Icelandic media, MJDB is mostly owned by Magnús B. Jóhannesson, who is director of a firm with the name of America Renewables, in Rolling Hills in California. No public information is available about the offering price for the geothermal plant.

iceland-grundartangi-century-nordural-elkem-china-bluestarInvestors and large industrial power consumers may see opportunity in owning the Hellisheiði geothermal plant. Two large industrial companies at Grundartangi in Southwestern Iceland, an aluminum smelter owned by the American firm Century Aluminum and a ferrosilicon plant owned by Elkem / China National Bluestar, have major power purchasing agreements running out in the coming years. Due to the current tight power supply situation in Iceland, it may become very valuable to own Iceland’s largest geothermal plant.

As the Hellisheiði Station has been under stress due to falling pressure in the geothermal area, with substantial investment needed to keep up full production, the interested buyers may also foresee a chance to get the plant for a fairly low price. However, having Icelandic politics in mind, it is very unlikely that the City of Reykjavík has any interest in selling the plant.

Lower cost of wind power

wind-lcoe_2010-2016_lazard_askja-energy-partners-2017The competitiveness of new wind power has been increasing rapidly. According to Lazard, the levelized cost of energy (LCOE) from onshore wind power in USA, is approximately 50% lower now than it was four years ago, and the lowest cost onshore wind projects now have a LCOE that is 33% lower than it was four years ago. As can be seen on the graph at left.

The lowest cost wind projects in the USA now have a LCOE of 32 USD/MWh. The lowest cost projects are mainly wind farms in the US Mid-West, where wind conditions are good, resulting in a high average capacity factor. And even though the lowest cost was steady (did not decline) between 2015 and 2016, new very large wind farms can be expected to offer even lower cost than 32 USD/MWh. For example, Morocco did receive average bids from Enel and Siemens of 30 USD/MWh from its tender for totally 850 MW wind energy projects (with the lowest offer at around 25 USD/MWh).

kvika-poyry_electricity-generation-cost-lcoe-iceland-slide-13-with-more-recent-figures-2For the Icelandic energy sector, it is interesting to compare the figures in the reports from Lazard on LCOE, with a recent report by Kvika bank and Pöyry. In the report by Kvika/Pöyry the LCOE for up to 6 TWh of new onshore wind power in Iceland is set at a fixed price (LCOE) of approximately 51-52 EUR/MWh. This is quite close to the average LCOE for onshore wind in USA as assumed by Lazard in 2015 (shown with red line on the graph at left).

When having regard to Lazard’s most recent report, from December 2016, it becomes obvious that the LCOE for onshore wind has declined further (the blue line on the graph shows Lazard’s average for onshore wind in its report from 2016). What then becomes especially important, is that now new onshore wind projects in Iceland can be expected to be even more economical than new geothermal projects. For more information on this issue, we refer to our earlier post on the subject.

The most surprising energy fact?

Here at the Icelandic Energy Portal, we are very proud of the fact that power consumption in Iceland is almost totally based on renewable power sources. And when we look at gross energy consumption, Iceland is also the green leader.

iceland-coal-consumption-2015_askja-energy-partners-2017Therefore, it may be a surprising fact that Iceland is fast increasing its coal consumption. In fact the country is becoming a major user of coal (per capita).

According to information from the International Energy Agency (IEA), coal consumption in Iceland (per capita) is now almost on pair with the coal consumption in the United Kingdom (UK). As can be seen on the graph at left.

In the coming years, it is expected that coal consumption (per capita) in Iceland will grow quite fast. And soon become close to the present world average coal consumption (per capita).

Iceland has no coal power station. The reason for the growing use of coal in Iceland, is the heavy industries located in the country. They import and use the coal in their industrial process.

united-silicon-plant_helguvik-icelandIceland has a major aluminum industry and the aluminum smelters need carbon materials for the production. Also, Iceland has a fast growing silicon industry, which also uses coal in their production. These are the reasons why Iceland is becoming such a substantial coal consumer.

The growing use of coal in Iceland in the coming years, is all related to new and upcoming silicon plants. These industrial plants are the main reason why Iceland is scoring much higher on the list of coal consuming countries, than people in general may assume.

Highly competitive wind power

In their recent report on subsea electric cable between Iceland and Britain, Kvika bank and Pöyry predict what new power projects will be developed in Iceland to fulfill the electricity demand. In this article we will focus on why wind power is likely to be an important part of the power development in Iceland. Also we will explain how the information in the said report about cost of wind generation is outdated, and how wind power in Iceland is far more competitive than presented in the report.

According to the report by Kvika and Pöyry, levelized cost of energy (LCOE) for 6 TWh of new wind power generation in Iceland will on average be approximately 51-52 EUR/MWh (as can be seen on the top-slide below, which is from a presentation by Kvika/Pöyry). It is interesting to compare this cost figure with LCOE for wind generation as represented by the financial firm Lazard. Note that the cost figures presented by Lazard are in USD, and here we use the average exchange rate in 2016, where one USD equals 0.9 EUR.

  • In 2014, Lazard LCOE for onshore wind was 33-73 EUR/MWh (with 53 EUR/MWh as average).
  • In 2015, Lazard LCOE for onshore wind was 29-69 EUR/MWh (with 49 EUR/MWh as average).
  • In 2016, Lazard LCOE for onshore wind was 29-56 EUR/MWh (with 42.50 EUR/MWh as average).

kvika-poyry_electricity-generation-cost-lcoe-iceland-slide-13The report by Kvika/Pöyry, mentioned above, was officially published around mid-year 2016. However, the main work on the report took place in the latter half of 2015. This means that the most recent LCOE-figures for wind power available when the research for the report was ongoing, were LCOE-calculations for the year of 2014.  Thus, it may not be surprising that the average LCOE for wind in the report by Kvika/Pöyry is close to Lazard’s result as presented in their report from September 2014 (LCOE version 8.0). The numbers are 51-52 EUR/MWh and 53 EUR/MWh, respectively.

We want to emphasise that Kvika/Pöyry did not use Lazard as a reference. Instead, the assumed LCOE in the report by Kvika/Pöyry is based on numbers from IRENA (IRENA Power Costs Report 2014, published in January 2015). It is also important to keep in mind that cost figures used by Kvika/Pöyry included the average cost of linking wind power farms to the grid.

However, what is especially important is how the figures for LCOE of wind power generation were presented in the work by Kvika/Pöyry. While the companies estimated the cost of each new geothermal- and hydro project to be developed, they simply used the average LCOE for wind (approximately 51-52 EUR/MWh) as a fixed LCOE for all new wind power projects in Iceland generating up to 6 TWh annually. Which is a very general and/or imprecise presentation of LCOE for wind.

kvika-poyry_electricity-generation-cost-lcoe-iceland-corrected-2017It would have been much clearer, for the comparison, to estimate not only average cost of wind, but also the lower cost and the higher cost of wind power, when developing 6 TWh of new wind generation. Having regard to the figures from Lazard, it can be expected that such a methodology would have resulted in a LCOE between 33-73 EUR/MWh. This is reflected by the red line on the graph at left (the average cost being the same as estimated by Kvika/Pöyry).

It should also be noted that due to good wind conditions in Iceland, the average cost of 6 TWh of new wind generation development might be even lower than the average given by Lazard or IRENA. Then, more than 2 TWh and possibly up to 3 TWh of new wind generation might be less costly than the high-cost geothermal projects planned in Iceland.

What now becomes quite clear, is how substantial low-cost wind power can be expected to be developed in Iceland, before constructing some of the new high-cost geothermal plants. It seems likely that at least up to 2 TWh of new wind power may be developed in Iceland much earlier than projected by Kvika/Pöyry. This conclusion was missing in the work of Kvika/Pöyry. As a result, Kvika/Pöyry under-estimated the possibilities of wind power in Iceland in the coming years.

kvika-poyry_electricity-generation-cost-lcoe-iceland-corrected_lazard-2017In addition, the cost figures used in the report by Kvika/Pöyry may already be outdated. LCOE for onshore wind has gradually been decreasing. Therefore, wind power may develop faster in Iceland than in the scenario(s) presented by Kvika/Pöyry. According to the most recent report by Lazard (version 10.0 from December 2016), LCOE for wind in the USA is now estimated to be between 28 and 56 EUR/MWh (with an average of 42 EUR/MWh).

These figures are strong arguments for assuming wind power in Iceland will be even more competitive than predicted a couple of years ago. This is explained by the additional red line on the last graph, which is based on the most recent figures from Lazard. The conclusion is that wind parks at sites in Iceland offering high capacity factor, will be more economical than some – or even many – of the geothermal projects now being considered in Iceland.

Declining interest in the Dreki area

Ithaca Energy, along with its partners Icelandic Kolvetni/Eykon and Norwegian Petoro, have relinquished their hydrocarbon exploration- and production licence, which was issued by the Icelandic National Energy Authority (NEA) in 2013.

iceland-oil-dreki-area-two-first-licenses-2013The license is is one of three licenses that the NEA has issued for for exploration and production of hydrocarbons in the Dreki Area, on the continental shelf north of Iceland. The first license was handed in already by December 2014, so now there is only one active hydrocarbon license on the Icelandic continental shelf.

According to a press release by the NEA, the holders of the license now being relinquished “acquired more than 1,000 km of 2D seismic in the summer of 2016. Based on interpretation of the data the operator concluded that the results of the completed exploration work in the 1st sub-period of the licence did not merit the continuation of exploration into the 2nd sub-period.” Geological studies based on the new seismic data indicate that the probability of finding oil and/or gas in commercial quantities in the selected focus area within their licence does not sufficiently support committing to the next phase in the work program.

The interpretation by Ithaca Petroleum suggests that there is more fracturing in their area of interest than had been initially considered. The potential source rocks are also deeper in the crust than anticipated, diminishing the chances of oil formation. Thus, the license has been handed in.

iceland-oil-dreki-area-three-first-licenses-2013According to the NEA, the geological setting of this licence-area is different from the area of the only remaining licence, which was granted in 2014 and has Chinese CNOOC as operator. However, it is still unclear if CNOOC will make any drilling in the area. In 2015, 2D seismic data was acquired, and possible acquisition of 3D seismic for selected parts of the licence area is expected to take place 2018. If the results of 3D seismic acquisition calls for further exploration, an exploration well may be drilled in the time period 2022-2026.

So far, is is uncertain whether hydrocarbons can be found in the Dreki Area and if so if it will be in commercial quantities. In the case of potential oil production in the area, the NEA expects it could take ten years until first oil following a discovery.

200 MW Búrfell Wind Park rejected by NPA

So far no wind farm has been constructed in Iceland. However, due to good wind conditions in the country and declining cost in wind power technology and generation, it is probably only a matter of time until we will see the first wind farm operating in Iceland.

Unfortunately, many of the best locations for wind farms in Iceland may be excluded from development, due to protection of the wilderness of the Icelandic highlands. The Icelandic National Planning Agency (NPA) recently gave its opinion on the environmental impact assessment (EIA) of the proposed 200 MW Búrfell Wind Farm (Búrfellslundur). This is an ambitious wind project, which the Icelandic National Power Company (Landsvirkjun) has been preparing for years, in the highlands of Southern Iceland.

The NPA concluded that the Búrfellslundur Wind Farm would have significant impact on the landscape and wilderness in the area, as well as on tourism and recreation. Furthermore, the NPA recommends that the power company should find another more suitable location, or scaling down the project. Both solutions would require a new environmental impact assessment.

iceland-wind-turbines-burfellThis opinion of the NPA means that Landsvirkjun’s first real wind farm project will be delayed. The company has already constructed two wind mills in the Búrfell area by Þjórsá river (photo at left), as part of a research and development project on the feasibility of wind power in Iceland. According to a statement from Landsvirkjun’s manager of wind projects, in 2015, the plan was to have the 200 MW Búrfell Wind Farm in operation as early as autumn 2017. Now, this plan has to be revised.

The Búrfell Wind Farm, as proposed by Landsvirkjun, would consist of up to 67 turbines, each with a maximum height of 150 m (to the tip of the blade). Each turbine was expected to have a capacity of 3-3.5 MW. Total capacity would have been close to 200 MW, generating approx. 705 GWh annually.

The main reason why the NPA gave a negative opinion regarding the project, is the location of the proposed wind farm. In March 2016, the Icelandic Parliament (Allþingi) adopted a special National Planning Strategy (Landsskipulagsstefna 2015-2026), emphasizing the environmental importance of the vast wilderness areas normally referred to as the central highlands of Iceland. According to the NPA, a 200 MW wind farm in the Búrfell-area does not align with the National Planning Strategy, thus recommending the power company to find another location for its wind farm, or scaling the project down.

landsvirkjun-burfell-wind-farm-proposal-1The area that was proposed for the wind farm by Landsvirkjun, spans up to 40 km2 of lava and sand plain. It is noteworthy that in the vicinity of this area, there are already two wind turbines (as mentioned above), in addition to several nearby large hydropower stations, with the relevant dams, reservoirs, transmission lines etc. However, the NPA is of the opinion that dozens of large wind turbines in the area will have such a strong visual effects it does not align with the recent National Planning Strategy.

Having to find another location for its first wind farm will be a disappointment for Landsvirkjun, as the area at Búrfell offers very high capacity factor for harnessing wind energy. According to information from Landsvirkjun, the Búrfell Wind Farm could be expected to deliver an average capacity factor of close to 50%, which is substantially higher than most wind farms in the world enjoy.

landsvirkjun-burfell-wind-farm-proposal-illustrationThe negative opinion of the NPA towards the project is obviously not what Landsvirkjun was expecting. The power company has for several years put enormous work and effort in preparing the Búrfell Wind Farm, including foreign consulting to ensure high quality development of the environmental impact assessment. However, it was always clear that placing large wind turbines within the wilderness areas close to the volcanic Mt. Hekla, and adjacent to popular tourist routes, would be controversial.

The decision of the NPA regarding the Búrfell Wind Farm will delay wind power development by Landsvirkjun. On the positive side, Landsvirkjun and other power companies now have the possibility to take note of an opinion by the NPA on wind power projects, in finding locations that are suitable for such major constructions. As there are numerous locations in Iceland that offer very high capacity factor for wind turbines, there is good reason to be optimistic on prosperous development of wind energy in Iceland in the coming years and decades.

Iceland’s new energy segment

If the IceLink HVDC subsea interconnector between Iceland and UK, will be developed, more than 2,000 new megawatts (MW) of power capacity is expected to be developed in Iceland in the coming two decades. All these capacity additions will all be in renewable power technology. Most of it will be in the traditional types of Icelandic electricity generation, which is hydro- and geothermal power. However, substantial amount of the new capacity will be in wind power, making wind power the fastest growing type of generation in Iceland.

Low-Cost Wind means Slower Growing Geothermal

It is hard to predict with precision how much capacity will be added to each of the three types of renewable generation mentioned above. The table below shows two predictions, one by Kvika/Pöyry and the other by Askja Energy Partners. According to Kvika/Pöyry, IceLink will need approximately 1,459 MW of new capacity, bringing total new capacity in Iceland to 2,137 MW by 2035.

Analysis of Askja Energy shows that Kvika/Pöyry may be over-estimating how fast new geothermal power can be developed in Iceland (and under-estimating the potentials of Icelandic wind power). We at Askja Energy, predict slower growth in new Icelandic geothermal power, and somewhat faster growth in wind power. In addition, it is very likely that new Icelandic hydropower can be developed somewhat faster than Kvika and Pöyry are forecasting in their central scenario.

Table: New power capacity (MW) in Iceland until 2035
Central scenario with IceLink HVDC cable
Forecast by Forecast by
Technology Kvika/Pöyry Askja Energy
Geothermal 722 580
Hydro 865 933
Wind 550 768
Total new capacity added 2,137 2,281

Note that the Askja Energy scenario assumes faster capacity additions in hydropower and wind power than Kvika/Pöyry, but substantially slower geothermal capacity additions. The result is less generation pr. each new MW (thus, higher new capacity needed in total to deliver same/similar generation). All numbers are an estimation and may vary, such as due to what power projects exactly (in each category) will be developed.

Wind Power the Fastest Growing Segment

No matter if the forecast by Askja Energy or the forecast by Kvika/Pöyry will be closer to the real development, wind power can be expected to become Iceland’s fastest growing energy segment. If IceLink will be constructed, no type of generation in Iceland will grow as fast (in percentages) as wind power. As explained on the graph below.

iceland-power-capacity-additions-until-2035_ketill-sigurjonsson-2016The question that remains, is if and when the decision will be taken on IceLink. But even without IceLink, it is likely that new wind power will be developed in Iceland in the coming years, as numerous locations in Iceland offer very high capacity factor for wind turbines.

Pöyry overestimating Icelandic geothermal

In their recent report titled “Subsea electric cable between Iceland and Britain – cost-benefit analysis”, Kvika bank and Pöyry seem to overestimate how fast Icelandic geothermal power can be developed. In their central-scenario, having regard to new demand from the IceLink subsea power cable, Kvika and Pöyry predict that by 2025 Iceland may have developed 820 MW of new geothermal capacity. This is somewhat surprising estimation, as it seems unrealistic to expect such a fast construction of new geothermal plants in Iceland.

kvika-poyry-iceland-new-electricity-generation-until-2035

According to Kvika and Pöyry, Iceland will need around 1,416 MW of new power capacity by 2025 if IceLink will be constructed. As shown on the graphs at left and below, Kvika/Pöyry expect most of this new capacity to be in new geothermal power plants, with a capacity of 820 MW. According to their report, 785 MW will be new traditional geothermal power plants and 35 MW will be smaller low temperature geothermal stations (totally 820 MW in new geothermal power).

The rest of the needed capacity by 2025, around 596 MW, is expected to include 448 MW in hydropower refurbishment (such as added capacity in current hydro stations), 93 MW in new large hydropower plants, and 55 MW in new small hydropower plants. Note that the exact predicted megawatts for each category are not absolute figures, so for each category there may be a few more or less MW. Thus, it is maybe not very surprising that the given figures in Pöyry’s slide-presentation for hydropower refurbishment, do not quite match (450/448), as can be seen on the graphs and also here on Twitter.

kvika-poyry-iceland-new-electricity-generation-until-2035-graphIceland offers very good geology for geothermal power development. However, it is costly and complicated to sufficiently establish and harness the geothermal resource in each new area. Having regard to the Icelandic experience in geothermal development so far, 785 MW of new large geothermal power stations may call for approximately eight to ten new development areas, each area with close to 100 MW of power capacity constructed in preferably two steps (starting with 50 MW or so).

There may be some possibilities to construct new Icelandic geothermal stations with 100 MW capacity before 2025. However, such an intensive construction/utilization in a new area could substantially increase the risk of over-exploitation of the geothermal area. And it is also important to have in mind that due to environmental regulations, such as regarding planning and impact assessment, it becomes even more unlikely that up to ten new geothermal projects can be developed in Iceland in less than a decade.

This does not mean that Iceland would not be able to deliver the power needed for IceLink in time. Due to well-known hydropower opportunities and good wind potentials, economical wind- and hydropower (in addition to substantial new geothermal power) would most likely ensure sufficient power supply for IceLink. But the scenario for each power category (geothermal, hydro, and wind) will most likely be somewhat different from what Kvika/Pöyry estimate.

For some reason, Kvika/Pöyry made little effort to cost-analyze the development of wind power in Iceland. Having regard to numerous good sites for high-capacity wind farms in Iceland, it can be argued that wind power can fill in the gap which may occur due to slower than expected development of geothermal power. In our next article, we will be looking further into this issue, explaining how much wind power may be developed in Iceland in the coming decade.